A pH-sensitive cationic lipid facilitates the delivery of liposomal siRNA and gene silencing activity in vitro and in vivo.
نویسندگان
چکیده
Modification of liposomal siRNA carriers with polyethylene glycol, i.e., PEGylation, is a generally accepted strategy for achieving in vivo stability and delivery to tumor tissue. However, PEGylation significantly inhibits both cellular uptake and the endosomal escape process of the carriers. In a previous study, we reported on the development of a multifunctional envelope-type nano device (MEND) for siRNA delivery and peptide-based functional devices for overcoming the limitations and succeeded in the efficient delivery of siRNA to tumors. In this study, we synthesized a pH-sensitive cationic lipid, YSK05, to overcome the limitations. The YSK05-MEND had a higher ability for endosomal escape than other MENDs containing conventional cationic lipids. The PEGylated YSK05-MEND induced efficient gene silencing and overcame the limitations followed by optimization of the lipid composition. Furthermore, the intratumoral administration of the YSK05-MEND resulted in a more efficient gene silencing compared with MENDs containing conventional cationic lipids. Collectively, these data confirm that YSK05 facilitates the endosomal escape of the MEND and thereby enhances the efficacy of siRNA delivery into cytosol and gene silencing.
منابع مشابه
Formulation of a therapeutic cationic liposome-siRNA complex for development to fight osteosarcoma
Introdution: Cationic liposomes have been presented for gene delivery as an alternative vector instead of viral vectors. A major challenge associated with siRNA delivery is the instability of liposomes, which is still a serious problem. The aim of this study was to provide an appropriate formulation to overcome this instability. Methods: In the present study (Scientific-Fundamental, Experiment...
متن کاملBcr-abl Silencing by Specific Small-Interference RNA Expression Vector as a Potential Treatment for Chronic Myeloid Leukemia
Background: RNA interference (RNAi) is the mechanism of gene silencing-mediated messenger RNA degradation by small interference RNA (siRNA), which becomes a powerful tool for in vivo research, especially in the areas of cancer. In this research, the potential use of an expression vector as a specific siRNA producing tool for silencing of Bcr-abl in K562 cell line has been investigated. Methods:...
متن کاملNanolipoparticles-mediated MDR1 siRNA delivery reduces doxorubicin resistance in breast cancer cells and silences MDR1 expression in xenograft model of human breast cancer
Objective(s): P-glycoprotein (P-gp) is an efflux protein, the overexpression of which has been associated with multidrug resistance in various cancers. Although siRNA delivery to reverse P-gp expression may be promising for sensitizing of tumor cells to cytotoxic drugs, the therapeutic use of siRNA requires effective carriers that can deliver siRNA intracellularly with minimal toxicity on targe...
متن کاملEnhanced endosomal/lysosomal escape by distearoyl phosphoethanolamine-polycarboxybetaine lipid for systemic delivery of siRNA.
Cationic liposome based siRNA delivery system has improved the efficiencies of siRNA. However, cationic liposomes are prone to be rapidly cleared by the reticuloendothelial system (RES). Although modification of cationic liposomes with polyethylene glycol (PEG) could prolong circulation lifetime, PEG significantly inhibits siRNA entrapment efficiency, cellular uptake and endosomal/lysosomal esc...
متن کاملThe Efficiency of CD40 Down Regulation by siRNA and Antisense ODN: Comparison of Lipofectamine and FuGENE6
Background: Dendritic cells (DCs) are ideal accessory cells in the field of gene therapy. Delivery of DNA and siRNA into mammalian cells is a useful technique in treating various diseases caused by single gene defects. Selective gene silencing by small interfering RNAs (siRNAs) and antisense oligodeoxynucleotides (ODN)s is an efficient method for the manipulation of cellular functions. An effic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of controlled release : official journal of the Controlled Release Society
دوره 163 3 شماره
صفحات -
تاریخ انتشار 2012